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Lyapunov Exponents

The Lyapunov Exponent is a quantity that represents the rate of ex-
ponential divergence of infinitesimally close trajectories.
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The Lyapunov Exponent is a quantity that represents the rate of ex-
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Consider a trajectory Zy(t) and a perturbed trajectory Z(t) in the phase
space

Z(1) = Zo(t) + 0Z(1),
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Lyapunov Exponents

The Lyapunov Exponent is a quantity that represents the rate of ex-
ponential divergence of infinitesimally close trajectories.

Consider a trajectory Zy(t) and a perturbed trajectory Z(t) in the phase
space

Z(t) = Zo(t) + 0Z(1), (1)
with

6Zo = Z(0) — Z(0).
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Lyapunov Exponents

The Lyapunov Exponent is a quantity that represents the rate of ex-
ponential divergence of infinitesimally close trajectories.

Consider a trajectory Zy(t) and a perturbed trajectory Z(t) in the phase
space

Z(t) = Zo(t) + 5Z(1), (1)
with

62y = Z(0) — Zo(0), (2)
then the two trajectories diverge at a rate given by

0Z(1)] ~ e 62|,
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Lyapunov Exponents

The Lyapunov Exponent is a quantity that represents the rate of ex-
ponential divergence of infinitesimally close trajectories.

Consider a trajectory Zy(t) and a perturbed trajectory Z(t) in the phase
space
Z(t) = Zo(t) + Z(1), (1)

with
62y = 2(0) - Zo(0), 2

then the two trajectories diverge at a rate given by
16Z(1)] ~ e |6Zo, (3)

where ) is the leading Lyapunov exponent.
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Computing Lyapunov Exponents

Lyapunov Exponents are defined as

A szl
~lim fim i WOZOI
A= lim A 7 M Ze(0), |
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Computing Lyapunov Exponents

Lyapunov Exponents are defined as

. ll6Z(1)||
A tlargoéZ:)rEO t ||5Zo(t)»\| @

they are usually hard to compute and often we can only be estimated
them numerically for a time t as

1s2(t)|

As g 1Zo()]

(5)

Roberto Galizia (NUIG) Postgraduate Group Talk September 26, 2019 3/11



Computing Lyapunov Exponents

Lyapunov Exponents are defined as

. ll6Z(1)||
A tlargoéZ:)rEO t ||5Zo(t)»\| @

they are usually hard to compute and often we can only be estimated
them numerically for a time t as

1s2(t)|

L 16Zo(0)] ©)

When one only has access to experimental data it is usually impossi-
ble to calculate Lyapunov Exponents.
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Complex Networks

Consider the following dynamical systems
% =1(x) (6)

where x € R" and f is a nonlinear vector field.

Coupling N such systems (agents or nodes), according to the topology
of any graph G, leads to the following set of N x n ordinary differential
equations

N
X =f(x)) =0} Lih(x). i=1,...N, @)
j=1

where h is a coupling function and L; is the jj-th entry of the Laplacian
matrix L.
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Laplacian Matrix

The Laplacian matrix is given by L = D — A, where D is a diagonal
matrix whose diagonal entries are the number of connections of each
node (the degree d; of node /) and A is the adjacency matrix of G .
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Laplacian Matrix

The Laplacian matrix is given by L = D — A, where D is a diagonal
matrix whose diagonal entries are the number of connections of each
node (the degree d; of node /) and A is the adjacency matrix of G .

dl i:j’
(L} = {1 i #j; iandjare connected, (8)

0 otherwise.

Roberto Galizia (NUIG) Postgraduate Group Talk September 26, 2019 5/11



Laplacian Matrix

The Laplacian matrix is given by L = D — A, where D is a diagonal
matrix whose diagonal entries are the number of connections of each
node (the degree d; of node /) and A is the adjacency matrix of G .

d,' I = ja
{L}j=< -1 i#}j; iandjare connected, (8)
0 otherwise.

Roberto Galizia (NUIG) Postgraduate Group Talk September 26, 2019 5/11



Laplacian Matrix

The Laplacian matrix is given by L = D — A, where D is a diagonal
matrix whose diagonal entries are the number of connections of each
node (the degree d; of node /) and A is the adjacency matrix of G .

d,' I:.Ia
{L}j=< -1 i#}j; iandjare connected, (8)
0 otherwise.
2 A AT [N=1 -1 1 7 [N=1 —1 —1
-1 2 o] -1 N-1 —1 -1 1 0
: : . : : : .. : : o : ®)
-1 0 ... 2 —1 -1 .. N—-1] L[ -1 0 1
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Synchronization manifolds

A most common problem addressed in Networks analysis is to deter-

mine when all the agents behave in the same fashion. This regime is
called synchronization.
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A most common problem addressed in Networks analysis is to deter-

mine when all the agents behave in the same fashion. This regime is
called synchronization.

Namely, consider a stable limit set s for equation (6)

s =f(s),
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Synchronization manifolds

A most common problem addressed in Networks analysis is to deter-

mine when all the agents behave in the same fashion. This regime is
called synchronization.

Namely, consider a stable limit set s for equation (6)
s = f(s), (10)
then s is a synchronization manifold if the following contraints hold

S=X{=Xo="---=XN (11)
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Synchronization manifolds

A most common problem addressed in Networks analysis is to deter-
mine when all the agents behave in the same fashion. This regime is
called synchronization.

Namely, consider a stable limit set s for equation (6)
s = f(s), (10)
then s is a synchronization manifold if the following contraints hold

S=X{=Xo="---=XN (11)

An central question is: for which values of coupling strength ¢ is the
synchronization manifold s stable?
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Linearization around the synchronization manifold

For the network

N
Xi =f(x;) —o Y _Ljh(x), i=1,...,N,
j=1
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Linearization around the synchronization manifold

For the network
N
j=1

consider the variational equations about the synchronization manifold
S,

0X; = Je(X)|y_s OX; — oLj In(X)|y_s 0X;, i=1,...,N,
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Linearization around the synchronization manifold

For the network

N
j=1

consider the variational equations about the synchronization manifold
S,
OX; = Jf(X)|x:s(5X,'—0'L,'j Jh(x)|x:séxja i= 1,...,N, (13)

where J¢(x) and Jy(x) are the Jacobians of f and h, respectively.
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Block-Diagonally Decomposition

If the network is connected, all the eigenvalues of L are real and non-
negative.
pr=0<pp < <,
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Block-Diagonally Decomposition

If the network is connected, all the eigenvalues of L are real and non-
negative.
p1=0<pp <--- < pp, (14)

with respective eigenvalues

€1,e2,...,€y\.
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Block-Diagonally Decomposition

If the network is connected, all the eigenvalues of L are real and non-
negative.

p1 =0 <pp <. <pp, (14)
with respective eigenvalues

€1,62,...,epN. (15)

We assume that L can be diagonalized. Therefore

0X; = Jr(X)|y—s OXi — oL In(X)|y_s 0X;, i=1,...,N,

Roberto Galizia (NUIG) Postgraduate Group Talk September 26, 2019 8/11



Block-Diagonally Decomposition

If the network is connected, all the eigenvalues of L are real and non-
negative.

p1 =0 <po <--- < pp, (14)
with respective eigenvalues
€e1{,es,...,eyn. (15)
We assume that L can be diagonalized. Therefore
ox%; = Ji(x)

(SXj—O'ijJh(X) 6xj7 i:17"')N7 (16)

|X:S |X:S

with the transformation

5y = [e1,ez,...,en] ox, (17)
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Block-Diagonally Decomposition

If the network is connected, all the eigenvalues of L are real and non-
negative.

p1 =0 <po <--- < pp, (14)
with respective eigenvalues
€e1{,es,...,eyn. (15)
We assume that L can be diagonalized. Therefore
0X; = Jr(X)|y_s OX; — oLj In(X)|y_s 0X;, i=1,....,N,  (16)
with the transformation
5y = [e1,ez,...,en] ox, (17)
can be block-diagonally decoupled as

3Y; = (J1(X, P)lyes — ot In(X)|ys) Oy, i=2,....,N.  (18)
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Normalized Variational Equations

Let us focus on the last equation

oY = (J5(%, P)ly—s — oti In(X)|ys) OYi, i=2,....,N.  (19)
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Normalized Variational Equations

Let us focus on the last equation

oY = (J5(%, P)ly—s — oti In(X)|ys) OYi, i=2,....,N.  (19)

@ A system of N — 1 blocks of equations,
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Normalized Variational Equations

Let us focus on the last equation

oY = (J5(%, P)ly—s — oti In(X)|ys) OYi, i=2,....,N.  (19)

@ A system of N — 1 blocks of equations,

@ Each block only differ from the other for the eigenvalue p;,
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Normalized Variational Equations

Let us focus on the last equation

oY = (J5(%, P)ly—s — oti In(X)|ys) OYi, i=2,....,N.  (19)

@ A system of N — 1 blocks of equations,
@ Each block only differ from the other for the eigenvalue p;,

@ For k =1, u1 = 0 and the correspondent eigenvector e, we have
the variational equation for the synchronization manifold.
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Normalized Variational Equations

Let us focus on the last equation

oY = (J5(%, P)ly—s — oti In(X)|ys) OYi, i=2,....,N.  (19)

@ A system of N — 1 blocks of equations,
@ Each block only differ from the other for the eigenvalue p;,

@ For k =1, u1 = 0 and the correspondent eigenvector e, we have
the variational equation for the synchronization manifold.

@ All the other eigenvalues correspond to the directions transverse
to the synchronization manifold.
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Master Stability Function

The Master Stability Function is the largest Lyapunov exponent Amax
for the generic variational equation

5.yi = (Jf(x7 p)|x:s+(a+i/8) Jh(x)|x:s)5yi7 I = 27"'7N' (20)

as a function of « and 3, i.e. Amax is a surface of the complex plane.
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Master Stability Function

The Master Stability Function is the largest Lyapunov exponent Amax
for the generic variational equation

5.yi = (Jf(xv p)|x:s+(a+i/8) Jh(x)|x:s)5yi7 I = 27"'7N' (20)

as a function of « and 3, i.e. Amax is a surface of the complex plane.

Therefore, for any value of o, we locate the point op; (forany i =
2,...,N) on the complex plane, and evaluate Amax at this point.
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Master Stability Function

The Master Stability Function is the largest Lyapunov exponent Amax
for the generic variational equation

5.yi = (Jf(xv p)|x:s+(a+i/8) Jh(x)|x:s)5yi7 I = 27"'7N' (20)

as a function of « and 3, i.e. Amax is a surface of the complex plane.

Therefore, for any value of o, we locate the point op; (forany i =
2,...,N) on the complex plane, and evaluate Amax at this point.

If Amax < 0 at ouj, then the eigenmode e; is stable.
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Master Stability Function

The Master Stability Function is the largest Lyapunov exponent Amax
for the generic variational equation

5.yi = (Jf(xv p)|x:s+(a+i/8) Jh(x)|x:s)5yi7 I = 27"'7N' (20)

as a function of « and 3, i.e. Amax is a surface of the complex plane.

Therefore, for any value of o, we locate the point op; (forany i =
2,...,N) on the complex plane, and evaluate Amax at this point.

If Amax < 0 at ouj, then the eigenmode e; is stable.

If all the eigenmodes are stable, then the synchronization manifold is
stable for that value of o.
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Thank you

Pecora, Louis M., and Thomas L. Carroll. "Master stability functions for synchronized
coupled systems.” Physical review letters 80.10 (1998): 2109.
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