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Lyapunov Exponents

The Lyapunov Exponent is a quantity that represents the rate of ex-
ponential divergence of infinitesimally close trajectories.

Consider a trajectory Z0(t) and a perturbed trajectory Z(t) in the phase
space

Z(t) = Z0(t) + δZ(t), (1)

with
δZ0 = Z(0)− Z0(0), (2)

then the two trajectories diverge at a rate given by

|δZ(t)| ≈ eλt |δZ0| , (3)

where λ is the leading Lyapunov exponent.
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Computing Lyapunov Exponents

Lyapunov Exponents are defined as

λ = lim
t→∞

lim
δZ0→0

1
t
ln
‖δZ(t)‖
‖δZ0(t), ‖

(4)

they are usually hard to compute and often we can only be estimated
them numerically for a time t as

λ ≈ 1
t
ln
‖δZ(t)‖
‖δZ0(t)‖

(5)

When one only has access to experimental data it is usually impossi-
ble to calculate Lyapunov Exponents.
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Complex Networks

Consider the following dynamical systems

ẋ = f(x) (6)

where x ∈ Rn and f is a nonlinear vector field.

Coupling N such systems (agents or nodes), according to the topology
of any graph G, leads to the following set of N × n ordinary differential
equations

ẋi = f(xi)− σ
N∑

j=1

Lijh(xj), i = 1, . . . ,N, (7)

where h is a coupling function and Lij is the ij-th entry of the Laplacian
matrix L.
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Laplacian Matrix

The Laplacian matrix is given by L = D − A, where D is a diagonal
matrix whose diagonal entries are the number of connections of each
node (the degree di of node i) and A is the adjacency matrix of G .

{L}ij =


di i = j ,
−1 i 6= j ; i and j are connected,
0 otherwise.

(8)


2 −1 · · · −1
−1 2 · · · 0
...

...
. . .

...
−1 0 · · · 2




N − 1 −1 · · · −1
−1 N − 1 · · · −1
...

...
. . .

...
−1 −1 · · · N − 1




N − 1 −1 · · · −1
−1 1 · · · 0
...

...
. . .

...
−1 0 · · · 1

 (9)
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Synchronization manifolds

A most common problem addressed in Networks analysis is to deter-
mine when all the agents behave in the same fashion. This regime is
called synchronization.

Namely, consider a stable limit set s for equation (6)

ṡ = f(s), (10)

then s is a synchronization manifold if the following contraints hold

s = x1 = x2 = · · · = xN (11)

An central question is: for which values of coupling strength σ is the
synchronization manifold s stable?
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Linearization around the synchronization manifold

For the network

ẋi = f(xi)− σ
N∑

j=1

Lijh(xj), i = 1, . . . ,N,

(12)

consider the variational equations about the synchronization manifold
s,

˙δxi = Jf(x)|x=s δxi − σLij Jh(x)|x=s δxj , i = 1, . . . ,N, (13)

where Jf(x) and Jh(x) are the Jacobians of f and h, respectively.
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Block-Diagonally Decomposition

If the network is connected, all the eigenvalues of L are real and non-
negative.

µ1 = 0 < µ2 ≤ · · · ≤ µN ,

(14)

with respective eigenvalues

e1,e2, . . . ,eN . (15)

We assume that L can be diagonalized. Therefore

˙δxi = Jf(x)|x=s δxi − σLij Jh(x)|x=s δxj , i = 1, . . . ,N, (16)

with the transformation

δy =
[
e1,e2, . . . ,eN

]
δx, (17)

can be block-diagonally decoupled as

˙δyi = (Jf(x,p)|x=s − σµi Jh(x)|x=s) δyi , i = 2, . . . ,N. (18)
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Normalized Variational Equations

Let us focus on the last equation

˙δyi = (Jf(x,p)|x=s − σµi Jh(x)|x=s) δyi , i = 2, . . . ,N. (19)

A system of N − 1 blocks of equations,

Each block only differ from the other for the eigenvalue µi ,

For k = 1, µ1 = 0 and the correspondent eigenvector e1, we have
the variational equation for the synchronization manifold.

All the other eigenvalues correspond to the directions transverse
to the synchronization manifold.
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Master Stability Function

The Master Stability Function is the largest Lyapunov exponent λmax
for the generic variational equation

˙δyi = (Jf(x,p)|x=s + (α+ iβ) Jh(x)|x=s) δyi , i = 2, . . . ,N. (20)

as a function of α and β, i.e. λmax is a surface of the complex plane.

Therefore, for any value of σ, we locate the point σµi (for any i =
2, . . . ,N) on the complex plane, and evaluate λmax at this point.

If λmax < 0 at σµi , then the eigenmode ei is stable.

If all the eigenmodes are stable, then the synchronization manifold is
stable for that value of σ.
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Thank you

Pecora, Louis M., and Thomas L. Carroll. ”Master stability functions for synchronized
coupled systems.” Physical review letters 80.10 (1998): 2109.
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